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1. Introduction  
 

 

As the naturalness and intelligibility of text-to-speech technology (TTS) have 

gradually improved in recent years (King, 2014), the technology has begun to see a wider 

range of use over the telephone, for example in interactive voice response systems used by 

banks and other businesses, as well as in more advanced artificial intelligent (AI) applications 

such as Google Duplex, where an AI agent automatically makes restaurant and hairdressing 

appointments for its user over the telephone, using a TTS synthetic voice to communicate 

with human employees at the restaurant or hair salon (Leviathan & Matias, 2018). 

In such commercial applications, the intelligibility of the TTS system is a crucial 

requirement. But despite advances in TTS technology, its intelligibility over the telephone 

line is still made difficult by three factors: First, the telephone as a channel reduces 

intelligibility, as speech signals may be band limited (International Telecommunication 

Union, 1988) and may also be degraded by speech coding and transmission errors (Friedman-

berg, Allendoefer, & Deshmukh, 2009). Secondly, even though the synthetic speech itself 

should carry minimal noise since it is based on professionally studio recorded speech samples 

or generated by a vocoder, there is likely to be acoustical background noise on the listener’s 

end, also referred to as the near end, that can reduce intelligibility (Morimoto, Sato, & 

Kobayashi, 2004). Finally, background noise, while already detrimental to natural speech 

intelligibility, has been shown to affect synthetic speech intelligibility to an even greater 

degree (King & Karaiskos, 2010). 

One promising solution to this intelligibility problem is a type of algorithms called 

near end listening enhancement (NELE) algorithms that has been shown to improve the 

intelligibility of synthetic speech in noise (Valentini-Bontinhao et al., 2013), particularly a 

subset of these algorithms that are both usable automatically in real-time and do not require 

any knowledge of the noise signal (e.g. Zorila, Kandia, & Stylianou, 2012). However, these 

algorithms have not been designed for use over a narrowband telephone transmission and 

their effectiveness over the telephone is yet unknown. Additionally, it is unclear whether 

there are any negative interactions between the NELE algorithms, synthetic speech, and 

telephone transmission that are not present for natural speech. 
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The aim of this dissertation is to design a complete and realistic testing platform that 

simulates this specific listening scenario and using this platform, conduct a number of formal 

listening tests in order to evaluate the effectiveness of NELE algorithms in improving the 

intelligibility of synthetic speech that is subsequently transmitted via telephone and presented 

in near end background noise. 
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2. Literature Review  
 
 

This literature review is structured into three parts. First, I will review the three 

intelligibility impediments—telephone degradation, background noise, and the interaction 

between synthetic speech and noise—that the use of synthetic speech over the telephone 

faces. Secondly, I will then review past research on speech enhancement techniques and their 

effectiveness on counteracting some of the intelligibility impediments explored. Finally, I 

will situate this dissertation and the motivations of this dissertation in the context of past 

research. 

2.1 Impediments to speech intelligibility 

2.1.1 Telephone audio encoding  

Telephone transmission has been known to negatively impact intelligibility. For 

speech to transmit over the telephone, the analog speech signal must first be converted to a 

digital signal in a process known as audio encoding and then from a digital signal back to an 

analog signal for playback in a process known as decoding. The telecommunication industry 

employs a number of codecs—standard for this encoding and decoding process—which have 

been shown to decrease intelligibility in two ways. First, most audio codecs only pass audio 

signals in the range of 300-3400 Hz, discarding the rest of the frequencies. Secondly, some 

audio codecs employ lossy compression to reduce the bitrate—the amount of data being 

transmitted—further degrading its intelligibility. 

First, I will review the detrimental effects of a limited bandwidth on speech 

intelligibility. Most audio codecs commonly used by telecommunication networks, including 

G.711, G.726, and G.729, are narrowband codecs that only pass audio signals in the range of 

300-3400 Hz (International Telecommunication Union, 1988). However, research has shown 

that the human audible frequency range reaches up to 15 kHz for most adults and up to 20 

kHz for children and younger adults, and certain speech sounds do in fact show significant 

spectral energy above the 3400 Hz upper limit of narrowband audio codecs (Monson et al., 

2014). Hughes and Halle (1956) recorded two male and one female English speakers 

pronouncing voiced and voiceless fricatives with equipment that captured frequencies of up 

to 10 kHz and their results showed that the spectral peaks for certain fricatives were located 
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in frequencies above 3.4 kHz. In particular, the spectral peaks for alveolar fricatives /s/ and 

/z/ were located between 3 and 8 kHz, and those for labio-dental fricatives /f/ and /v/ were 

located between 8 and 9 kHz. A later experiment by Jongman et al. (2000), performed with 

20 subjects, corroborated the results of Hughes and Halles and found spectral peak location to 

significantly distinguish place of articulation of fricatives. Research seems to suggest that the 

exclusion of higher frequencies, and consequently the removal of the spectral peaks of certain 

consonants, does impact intelligibility. Moore et al. (2010) found in formal listening tests that 

there was a statistically significant difference in intelligibility for normal hearing listeners 

when speech is low-pass filtered at different cut-off points, with speech low-pass filtered at 5 

kHz being less intelligible than speech low-pass filtered at 7.5 kHz. Another research 

performed with children instead of adults found that normal hearing children required three 

times as much exposure to novel words to learn them when the words were low-pass filtered 

at 4 kHz compared to when the words were low-pass filtered at 9 kHz (Pittman, 2008). 

Therefore, by discarding frequencies outside of the range of 300-3400 Hz, narrowband 

telephone codecs are discarding information used to distinguish certain fricatives and 

consequently reducing intelligibility. 

Next, I will discuss how data compression performed by audio codecs can reduce 

speech intelligibility over the telephone. In order for more calls to be transmitted under the 

same network capacity, audio codecs such as G.726 perform data compression to the speech 

signal to reduce its bitrate. For example, the G.726 codec employs adaptive differential pulse-

code modulation (ADPCM), which varies the quantization step size—the definition or level 

of detail of the amplitude in a digital signal—to reduce bitrate (International 

Telecommunication Union, 1990). While ADPCM is able to significantly reduce the bitrate 

of a speech signal from 64 kb/s (as in G.711) to 32, 24, or 16 kb/s, it has also been found to 

reduce its intelligibility. In Friedman-berg et al. (2009), the investigators tested the 

intelligibility of different speech codecs using the modified rhyme test. Results (n=24) 

showed that speech encoded under the ADPCM-compressed, 16 kb/s G.726 codec had a 

small but significant reduction in intelligibility compared to speech encoded under the 64 

kb/s G.711 codec, with word accuracy rate (WAR) dropping from 95% to 90%. 

2.1.2 Background noise  

Perhaps unsurprisingly, acoustical background noise has been found to affect the 

intelligibility of speech. While evident in our personal experience conversing in noisy 
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environments, this phenomenon has also been well documented in the literature through 

formal listening tests, in which subjects listen to stimuli under different signal-to-noise ratios 

(SNR), where the lower the SNR, the noisier the speech, and are then asked to reproduce the 

stimuli. For example, in Morimoto, Sato, & Kobayashi (2004), the investigators studied the 

effects of noise and reverberation on speech intelligibility by performing a series of listening 

tests with five SNRs and two reverberation times. Results (n=13) showed that when the 

stimuli are comparatively less noisy, at SNRs of 15 dB and above, WAR was almost 100%. 

But this percentage dropped to roughly 80% and 60% when the background noise became 

more significant at SNRs of 0 and -5 dB, respectively. Results showed that intelligibility was 

affected by noise level but not by reverberation, at the noise and reverberation levels tested. 

Similar results were obtained by George, Goverts, Festen, & Houtgast (2010) in a similar 

study. 

 
Fig. 2.1: Formal listening test results of intelligibility in 2 noise types, reproduced from 

Cooke et al. (2013). Listeners’ mean WAR (open circles) as a function of SNR for competing 
speech noise (CS) and speech shaped noise (SSN). 

Another interesting property of noise’s effect on intelligibility is that this effect is 

non-linear, such that given a number of SNRs at fixed intervals (e.g. -10, -5, 0, 5, 10 dB), the 
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difference in intelligibility between the SNRs would not be equal. Rather, the intelligibility of 

speech in different SNRs can be fitted onto a psychometric function, where change in 

intelligibility is more acute near 50% WAR and less so near the two extremes. This has been 

shown in evaluation studies such as Cooke, Mayo, & Valentini-Bontinhao (2013) and 

Chermaz, Valentini-Bontinhao, Schepker, & King (2019), a figure from the former has been 

reproduced in Figure 2.1 to illustrate this phenomenon. 

2.1.3 Synthetic speech in noise 

 
Fig. 2.2: Word error rates of natural speech and HMM-based synthetic speech in 3 noise 
conditions (SNR in dB) Difference in intelligibility shown in percentage points. Adapted 

from King & Karaiskos (2010). 

Historically, synthetic speech has been less intelligible than natural human speech 

(Green, Logan, & Pisoni, 1986; Bennett, 2005), but this pattern began to change in the late 

2000s, when a hidden-Markov-model-based (HMM) speech synthesis system achieved a 

WER statistically comparable to that of natural speech (Yamagishi et al., 2008) and in the 

2010s with the advent of deep-neural-network-based systems (Zen, Senior, & Schuster, 

2013), which now routinely achieves similar intelligibility to natural speech. 

However, even though recent synthetic speech systems may be as intelligible as 

natural speech in quiet, evaluation studies have shown that in the presence of background 
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noise, synthetic speech suffers a bigger reduction in intelligibility compared to natural 

speech. In King and Karaiskos (2010), intelligibility of natural and synthetic speech was 

measured in multiple noise conditions: without additive noise, with additive noise at a signal-

to-noise ratio of 0 dB, and at SNR of -5 dB. Results showed that in quiet, intelligibility was 

close between natural and synthetic speech, but the gap widened significantly at SNRs of 0 

and -5 dB. For instance, without additive noise, the benchmark hidden-Markov-model 

(HMM) statistical parametric TTS system had a WER of 19% compared to 13% of natural 

speech, representing a 6 percentage point difference between the two. At an SNR of 0 dB, the 

gap widened reaching a 18.5 percentage point difference and at SNR of -5 dB, a 20 

percentage point difference. This shows that while some modern synthetic speech systems 

may not hinder intelligibility in quiet, synthetic speech as a whole still presents a challenge to 

intelligibility due to its negative interaction with background noise as well as in cases where 

an older TTS system is used, for example with less popularly spoken, under-researched 

languages.  

2.2 Near end listening enhancement 

 

Fig. 2.3: A diagram illustrating the near end listening enhancement problem for our specific 
scenario of synthetic speech over the telephone. Far end refers to the original signal – the 

synthetic speech, while near end refers to the receiver or listener’s end 

Given that the three intelligibility impediments discussed in the previous section are 

inherent to the use case of TTS over the telephone, the question is therefore whether we can 

enhance the synthetic speech signal prior to its transmission over the telephone and playback 

in background noise, to counteract some of the effects of these impediments, making the 

speech more intelligible compared to an unenhanced baseline (Figure 2.3). This problem, 

known as the near end listening enhancement (NELE) problem, has seen research interest in 

recent years as it has broad implications in many speech production and playback scenarios 
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such as in public announcements in train stations and airports, in telephone conversations, or 

in radio communications. 

2.2.1 NELE for near end noise 

Perhaps the most well-studied intelligibility impediment for NELE is near end noise, 

partly due to how near end background noise is present in most speech production and 

playback scenarios. Due to the popularity of this research topic, many different NELE 

approaches with varying techniques and constraints have been proposed and tested over the 

years. In the following paragraphs, I will give a brief overview of these approaches. 

One NELE approach for near end noise explored by phoneticians involved manually 

segmenting and labelling speech, then selectively increasing the relative intensity and/or 

duration of perceptually important sounds that are of low intensity (e.g. fricatives) and/or 

brief in duration (e.g. plosive release). Gordon-Salant (1986) studied increasing consonant 

duration and consonant-vowel intensity ratio and found in formal listening tests using 

nonsense consonant-vowel (CV) pairs that increasing the consonant-vowel intensity ratio 

alone was able to increase the syllable’s intelligibility. Hazan and Simpson (1996) took a 

more fine-grained approach and differentiated between different types of consonants: 

plosives, fricatives, affricates, approximants, and nasals. For each type of consonant, they 

performed a specific set of amplification procedures, with different gains in intensity for 

different types of consonants and for different regions within a consonant. Results (n=13) 

from formal listening tests showed that this approach was effective in increasing the 

intelligibility of nonsense VCV syllables in speech shaped noise at SNRs of -5 and 0 dB. 

However, further experiments (n=12) that tested its effectiveness in a sentential setting using 

semantically unpredictable sentences instead of isolated nonsense VCV syllables showed 

mixed results, with plain unmodified speech scoring higher than modified speech at an SNR 

of 0 dB and vice versa at an SNR of 5 dB. For our particular use case, this approach presents 

two problems. First, its effectiveness in full sentences is yet unclear but more importantly, the 

manual procedures required of segmentation, labelling, and selective enhancement, while 

perhaps applicable for pre-recorded messages like public announcements or deterministic 

IVR utterances, would not be applicable for real-time TTS production.  
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Fig. 2.4: The effects of compression – one of the techniques used in NELE to increase 
intelligibility in noise. Reproduced from Zorila, Kandia, & Stylianou (2012). 

A more algorithmic approach to NELE in noise using signal processing techniques 

has also been explored by researchers. Niederjohn and Grotelueschen (1976) proposed one of 

the first NELE algorithms, which first applied a high-pass filter then a rapid amplitude 

compression to the speech signal. In formal listening tests using monosyllabic English words, 

at five different SNRs (-10, -5, 0, 5, and 10 dB), results (n=6) showed that this approach was 

able to increase WAR at all five SNRs tested. In particular, at SNRs of -5 and 0 dB, the 

algorithm was able to dramatically boost WAR from 30% to 85% and from 35% to 90% 

respectively.  

More recent works motivated by Niederjohn and Grotelueschen’s approach of 

reallocating energy in the frequency domain (high-pass filter) and the time domain 

(compression) include the spectral shaping and dynamic range compression (SSDRC) 

algorithm by Zorila, Kandia, & Stylianou (2012). In the frequency domain portion of the 

algorithm, SSDRC differs from Niederjohn and Grotelueschen’s algorithm in two ways: first, 
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instead of one high pass filter, SSDRC first performs formants enhancement, then two pre-

emphasis filters boosting energy above 1000 Hz, with the latter also reducing the energy of 

frequencies below 500 Hz. Secondly, instead of indiscriminately applying a high pass filter to 

all portions of the signal, SSDRC only performs the formants enhancement and the first filter 

if the frame is estimated to contain voicing, thereby preventing the introduction of artefacts 

from performing these operations to unvoiced speech. Next, in the time domain portion of the 

algorithm, dynamic range compression is performed, which similarly to Niederjohn and 

Grotelueschen’s rapid amplitude compression, is able to reduce the dynamic range of the 

speech signal, making speech sounds previously low in amplitude (typically consonants) 

more prominent and vice versa, effectively increasing the consonant-vowel intensity ratio, 

similarly to the phonetic approaches explored above. In intelligibility tests using 

phonemically balanced Harvard sentences (e.g. “Oak is strong and also gives shade”), 

SSDRC is able to increase intelligibility across noise types and across SNRs. Compared to 

the manual approach above, SSDRC has been shown to be effective when applied to 

sentences and is also algorithmic, thus applicable to automatic real-time enhancement for 

TTS. 

2.2.3 NELE for synthetic speech in noise 

Given the success of NELE algorithms in improving intelligibility in noise, 

researchers have attempted to explore whether these approaches designed for natural speech 

would also be effective for synthetic speech. Valentini-Botinhao et al. (2013) tested the 

effectiveness of 6 NELE algorithms when applied to an HMM-based synthetic speech 

system, in three SNR conditions and two noise types. The list of NELE algorithms tested 

included the noise-independent SSDRC, a number of noise-dependent algorithms as well as 

algorithms combining the noise-dependent algorithms with SSDRC. Results (n=88) showed 

that SSDRC as well as algorithms combined with SSDRC were effective in increasing the 

intelligibility of the HMM-based system in all noise conditions. Results for the noise-

dependent algorithms were mixed, with all systems able to improve intelligibility in 

stationary, speech-shaped noise while some systems performed equally to or worse than the 

unmodified baseline in competing speaker noise. Across all NELE algorithms, SSDRC was 

shown to be the most effective, across all noise conditions. This study showed that NELE 

algorithms, in particular SSDRC, were effective in improving the intelligibility of synthetic 

speech in noise. 
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2.2.2 NELE for telephone transmission and noise 

While NELE algorithms for noise have been shown to be effective for both natural 

and synthetic speech, their effectiveness when transmitted through a narrowband telephone 

codec is still unclear. Examining SSDRC as an example, one of its pre-emphasis filters 

boosts all frequencies above 1 kHz, which would include frequencies above 3.4 kHz. 

Additionally, when broadband compression is performed, the intensity of low-intensity 

portions of the speech signal is boosted. As many consonants such as fricatives [s] and [f] 

have energy between 4-8 kHz and are often low in intensity compared to vowels, energies 

above 3.4 kHz would therefore be boosted. However, if the SSDRC enhanced speech is 

transmitted via narrowband telephone encoding that only passes frequencies between 300-

3400 Hz, all the enhancement done to frequencies above 3.4 kHz would be completely 

discarded.  

It is unclear whether the limited frequency range of narrowband telephone 

transmission would be detrimental to the effectiveness of SSDRC and the other NELE 

methods described above. The formal listening tests previously conducted to evaluate NELE 

performance have used stimuli with a much higher frequency range than the one used by 

narrowband telephone: the Hurricane Challenge presented stimuli at a sampling rate of 16 

kHz, thus a Nyquist frequency of 8 kHz (Cooke et al., 2013) while Chermaz et al. (2019) 

presented stimuli at a sampling rate of 48 kHz. Further, past research on NELE specifically 

for narrowband telephone transmission, primarily by Jokinen and colleagues (Jokinen & 

Alku, 2017; Jokinen, Remes, & Alku, 2017) focused on enhancing the speech signal after 

telephone transmission and the accompanying degradations have already taken place, instead 

of enhancing the speech signal prior to transmission. As the aim of this dissertation is to 

explore ways to enhance synthetic speech prior to transmission and playback, Jokinen and 

colleagues’ results are therefore not applicable. 

2.3 Motivation for this study 
As shown in the previous sections, the use of TTS over the telephone suffers from 

three impediments to intelligibility: telephone transmission, background noise, and the 

interaction between synthetic speech and noise. The effects of these impediments have been 

explored, but it is unclear how all three of these impediments interact. Similarly, I’ve 

reviewed how NELE algorithms have been shown to improve the intelligibility of speech, 

both natural and synthetic, in noise. Yet, it is unclear whether NELE still remains effective 
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when applied to speech prior to telephone transmission and indeed when all three 

impediments are present. In this dissertation, I will devise a complete testing pipeline to 

simulate this specific listening scenario and perform a series of formal listening tests in order 

to evaluate the effectiveness of NELE on synthetic speech, when applied prior to telephone 

transmission and playback in noise. 
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3. Experimental Design 
 

 

As established in the previous chapter, the objective of this dissertation is to evaluate 

the effectiveness of NELE algorithms on synthetic speech, when applied prior to narrowband 

telephone transmission and playback in noise, by conducting a series of formal listening tests. 

In this chapter, I will first detail the materials and methods used to recreate this specific 

listening scenario and explain the design choices made. Then, I will outline the experimental 

design of the listening tests. 

3.1 Materials 

3.1.1 Selecting the corpus and dataset 

The Blizzard Challenge 2011 dataset (King & Karaiskos, 2011) was chosen to be 

used in the experiments. The Blizzard Challenge is an annual challenge in speech synthesis 

between various research groups. The dataset includes two main sets of speech data -- the 

training set and testing set. The training set only includes human speech data, which was used 

by the synthetic speech systems as training data. The testing set, on the other hand, contains 

speech samples of the same sentences produced by a human speaker (same speaker as the 

training set) as well as synthetic speech systems (which are based on the same human speaker 

who recorded the training and testing data), allowing for direct comparison to be made 

between natural and synthetic speech. In particular, 100 sentences from the “news” corpus of 

the testing set is used. These are sentences, 9 to 10 words in length, selected from the 

Glasgow Herald newspaper, with either a journalistic, expository prose or a conversational 

prose, with the latter coming from interview quotes in the news articles.  

Police said there were no suspicious circumstances surrounding the death. 

The 30-day time limit looks increasingly optimistic and unrealistic. 

“I found them to be a really lovely family.” 

Ellie was an inspiration to her friends and family. 

“I felt compromised and in some sort of trap.” 

This is a most unusual and most distressing case. 

The restructuring proposals will effectively block that power play. 
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Inspector Charles Rankin praised the valiant efforts of his officers. 

New evidence has emerged that heavier babies have higher intelligence. 

So it’s a great pressure to have in some ways.  

Table 3.1: 10 sentences from the Scottish news corpus used in this study, from King & 
Karaiskos (2011). 

The natural speech recordings had been made at a sampling rate of 48 kHz and at 16 

bits per sample, of a female speaker with a general American accent. For synthetic speech, 

speech samples were generated by the HTS hidden-Markov-model (HMM) statistical 

parametric system (Zen et al., 2007). The synthetic speech samples had been generated at the 

same sampling rate and bit depth as the natural speech.  

An HMM statistical parametric system was chosen over a state-of-the-art deep neural 

network (DNN) statistical parametric system due to the ease of access to the former, as it is 

available in the Blizzard dataset along with the corresponding natural speech, while still 

being comparable to DNN systems due to the theoretical similarities between the two, as both 

generate artificial waveforms based on statistical parametric representations. It is also due to 

this comparability reason that an HMM system was chosen over a concatenative synthesis 

system. 

We expect the HMM system to be marginally less intelligible than natural speech, 

based on listening test results from King & Karaiskos (2011), where the HMM system was 

found to have a word error rate (WER, lower the better) of 20% and 14% in semantically 

unpredictable sentences and when reading addresses, compared to natural speech WER of 

16% and 13% respectively. 

3.1.2 Selecting the NELE algorithms 

Two NELE algorithms, SSDRC (Zorila, Kandia, & Stylianou, 2012) and ASE 

(Chermaz, 2020) have been chosen for the experiments. These two algorithms were selected 

for three main reasons: first, both of these algorithms are considered to be the state of the art 

in NELE research, with SSDRC scoring amongst the highest in NELE evaluation studies 

including the first Hurricane Challenge (Cooke et al., 2013) and Chermaz et al. (2019), and 

ASE scoring amongst the highest in the preliminary results of the second Hurricane 

Challenge (Cooke, Mayo, & Valentini-Botinhao, 2020). Secondly, they are both noise-
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independent. Noise-independent algorithms, unlike their noise-dependent counterparts (e.g. 

Schepker, Rennies, & Doclo, 2013), do not require any knowledge of the noise signal at the 

receiver’s end, such as its intensity or spectral characteristics. As we are attempting to 

enhance speech prior to telephone transmission, we would have no knowledge of the near end 

noise signal, therefore making this noise-independent constraint necessary. Finally, the two 

algorithms represent two differing approaches to NELE. SSDRC is designed to maximize 

intelligibility while ASE is designed to achieve a balance between increasing intelligibility 

and preserving speech quality. This is reflected in the techniques used, with SSDRC taking a 

broader and simpler signal-processing approach and ASE performing a more fine-grained 

approach inspired by techniques used by sound engineers and audio producers in the 

entertainment industry, as will be detailed in the following paragraphs. 

SSDRC consists of two parts: energy reallocation in the frequency domain and in the 

time domain. In the first portion of the algorithm, SSDRC performs formants enhancement, 

then a pre-emphasis filter boosting energy from 1100 Hz, and finally a second pre-emphasis 

filter boosting energy between 1000 to 4000 Hz. The formants enhancement and the first 

filter are only applied if a frame is estimated to contain voicing, thereby preventing the 

introduction of artefacts from performing these operations on unvoiced speech. Next, in the 

time domain portion of the algorithm, a fixed broadband compression is performed, reducing 

the dynamic range of the speech signal, making speech sounds previously low in amplitude 

(typically consonants) more prominent and vice versa. 

In ASE, the signal is divided into six frequency bands, with the frequency range for 

the bands based on state-of-the-art mixing consoles, and each band is compressed 

individually using a fully automatic compressor. ASE’s approach to compression differs from 

SSDRC in two main ways. First, compression is applied to each frequency band individually 

instead of to all frequencies at once. Secondly, the compressor is guided by statistical 

measurements of the signal instead of using a static set of parameters. With these two 

features, ASE avoids performing compression if the signal already appears compressed and 

avoids harmonic distortion from excessive compression. Subsequently, the signal is equalized 

by analyzing the power in the different frequency bands. One band is taken as a reference and 

the other bands are scaled in respect of this. As opposed to using predetermined pre-emphasis 

filters as in SSDRC, this equalization approach avoids excessively boosting certain 

frequencies if they were already at a comparatively high level. Finally, broadband 
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compression and limiting are performed, emulating the mastering procedures performed in 

the entertainment industry.  

3.1.3 Simulating telephone transmission 

A simulation pipeline was set up to emulate a compressed narrowband telephone 

channel at 16 kb/s, using the ITU-T G.191 software tools for speech and audio coding 

standardization (International Telecommunication Union 2019). In this pipeline, the speech 

signal is first downsampled from 48 kHz to 8 kHz, then its active speech level is set to -26 

dBov and filtered according to the telephone bandpass defined in ITU-T recommendation 

G.712. Subsequently, it is encoded according to the G.711 A-law codec, then encoded and 

decoded according to the G.726 codec at 16 kb/s, and decoded using the G.711 codec. 

Finally, the decoded signal is filtered according to ITU-T recommendation P.830 and its 

active speech level set to -26 dBov. 

3.1.4 Simulating near end background noise 

 
Fig. 3.2: Equalizer emulating the effects of earbuds blocking the ear canal resonance and the 

higher frequencies. The horizontal axis shows frequencies in logarithmic scale and the 
vertical axis shows amplitude in dBFS. 
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For the near end background noise, the cafeteria noise environment recorded by 

Kayser et al. (2009) was chosen. It has been recorded at 48kHz, at 24 bits per sample, in two 

channels and is representative of a large public space with relatively steady-state noise – a 

large number of individuals speaking at the same time in the background. The cafeteria noise 

recording was chosen because it had been previously used in evaluation studies of NELE 

algorithms (Chermaz et al, 2019), and is representative of a common use case of TTS 

telephone calls, for instance when a restaurant employee receives a reservation telephone call 

from an automated AI system equipped with TTS, such as Google Duplex.  

This noise recording was further processed by an equalizer created using a popular 

digital audio workstation software Cubase to simulate the effects that wearing earbuds has on 

near-end noise. First, since the earbuds are plugged into the listener’s ear canal, they cancel 

out the ear canal resonance at 2-4kHz. Secondly, the earbuds physically block out higher 

frequencies. The precise equalizer settings can be found in Figure 3.2. 

3.2 Listening Test Design 
A series of three listening tests were conducted in total: first, a pre-experiment 

calibration test was performed to establish the SNRs that should be used for the main 

experiments, followed by a first experiment using natural speech, NELE, telephone 

simulation, and noise to establish a baseline, and finally a second experiment performed with 

the same conditions as the previous experiment, but done using synthetic speech. 
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3.2.1 Pre-experiment calibration test 

 
Fig. 3.3: an illustration of equivalent intensity change (EIC) where a speech modification was 

able to improve WAR from 50% to 75%, at an SNR of 2.5 dB. Given the psychometric 
curve, we are able to see that without any modifications, it would have required an SNR 

improvement of 4 dB to achieve the same level of WAR. Therefore we can conclude that the 
modification brings an equivalent intensity change of 4 dB. Reproduced from Chermaz et al. 

(2019). 

The pre-experiment calibration test had two objectives: first, to determine the SNRs to 

be used later in the two main experiments. For the two main experiments, we needed to find 

the three SNRs that would correspond to WARs of 25%, 50%, and 75% for plain, 

unenhanced natural speech over the telephone. This would allow us to determine the 

effectiveness of the NELE algorithms at different noise levels. Secondly, the calibration test 

was needed to find the psychometric curve so that any intelligibility improvements brought 

on by the NELEs can be expressed in terms of equivalent intensity changes (EIC) in 

decibels.  

As previous NELE research has found, intelligibility in noise lies on a psychometric 

curve and this curve can be estimated using logistic approximation (Cooke et al. 2013). With 

a psychometric curve, we would be able to determine the SNR that would correspond to any 
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given WAR and vice versa, allowing us to determine the three SNRs for the main 

experiments. This would also allow us to determine the EIC for a given NELE algorithm, 

defined as the amount of SNR improvement (in dB) that the unmodified speech would have 

required in order to achieve the same WAR as the modified speech. An illustration of this can 

be found in Figure 3.3.  

 
Fig. 3.4: A flowchart illustrating the pipeline for creating the stimuli used in the pre-

experiment calibration test 

7 native English speakers with self-reported normal hearing were recruited for the 

calibration test. The participants were all undergraduate students at the University of 

Edinburgh, recruited online through social media.  

A total of 90 sentences were used in the listening test, with 80 sentences being test 

sentences and 10 being practice sentences. The 80 test sentences were divided into 8 blocks 

of 10 sentences, with each block corresponding to one of eight SNRs (-10, -8, -6, -4, -2, 0, 2, 

4 dB). The 10 practice sentences had at least one of each SNRs. The 90 stimuli were taken 

from the natural speech news corpus of the Blizzard Challenge 2011, then processed with the 

telephone transmission simulation, and mixed with the noise signal. The speech signal was 

monaural presented diotically, emulating a telephone call taken with earbuds, while the noise 

signal was binaural. 

The listening test was conducted in sound-attenuated booths, each equipped with a 

computer, mouse and keyboard as well as a pair of Beyerdynamic DT 770 headphones 

connected through a Focusrite iTrack Solo audio interface. 

Participants began the test with the 10 practice sentences, with which they became 

familiarized with the keyboard and the interface of the MATLAB program used to collect 

responses. Each practice sentence was played only once, and participants were asked to type 

out what they had heard. At this stage, participants were allowed to change the volume at 
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which the stimuli were played, something they could no longer do once the practice session 

ended.  

After the practice session, participants listened to the 8 blocks of 10 sentences, with 

each sentence played only once, and were asked to type out what they had heard. The 

ordering of the blocks and of the sentences within the blocks were pseudo-randomized using 

the MATLAB function randperm to avoid any unintended positive or negative effects 

arising from the sentence or block order. 

 WARs for the content words of the sentences were computed for each SNR block 

using an automated scoring script, which divided the number of correct content words by the 

total number of content words in the sentences, after removing non-content-words “a”, “the”, 

“in”, “to”, “on”, “is”, “and”, “are”, “of”, “for”. 

With the WAR results from the 8 SNR blocks, we used the MATLAB glmfit 

function and the logit link function to estimate the psychometric curve, by finding the 

best-fitting logistic function as shown in Cooke et al. (2013). Using the psychometric curve, 

SNRs corresponding to WARs of 25%, 50%, and 75% were determined for use in the next 

experiments.  

3.2.2 Experiment 1: natural speech over the telephone and in 
noise  

 

Fig. 3.5: A flowchart illustrating the pipeline for creating the stimuli used in experiment 1. 

Using the low, mid, and high SNRs obtained from the calibration test, an experiment 

was performed to test the effectiveness of NELE algorithms on natural speech, when applied 

prior to narrowband telephone transmission and playback in noise. 
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Data was collected from 20 native speakers of English with self-reported normal hearing. 

These participants were a separate group from the ones who participated in the calibration 

test to avoid any familiarization to the test sentences used. They were however recruited in 

the same way and therefore shared similar demographic features.   

A total of 100 sentences were used, with 10 being practice sentences. The 10 practice 

stimuli were plain, unenhanced speech with medium SNRs while the 90 test sentences were 

used to generate stimuli for each of the 9 conditions (3 NELE conditions * 3 SNR 

conditions). 

The experiment had a practice phase similar to the calibration test where participants 

familiarized themselves with the testing interface and adjusted the volume level. After the 

practice session, a random permutation of the 90 test sentences was obtained using the 

MATLAB function randperm, randomizing the ordering of the sentences. Then, they were 

played in 3 blocks of 30 sentences, each block corresponding to an SNR. The ordering of the 

SNR blocks and the ordering of the NELE conditions within each block were randomized. 

Each sentence was played once and participants were asked to type out what they had heard. 

Due to randomization, a sentence is not tied to a NELE condition or an SNR condition, and 

indeed appears in different variations across participants.  

Finally, WARs for the content words of the sentences were computed for each of the 

9 conditions using the same automated scoring script used in the calibration test.  

3.2.3 Experiment 2: synthetic speech over the telephone and in 
noise  

 
Fig 3.6: A flowchart illustrating the pipeline for creating the stimuli used in experiment 2. 

Experiment 2 was performed using the same conditions as the previous experiment 

except for the natural speech stimuli being replaced by synthetic speech stimuli generated by 
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the HMM statistical parametric system, in order to test the effectiveness of NELE algorithms 

on synthetic speech. 

Data was collected from 20 native speakers of English with self-reported normal 

hearing. These participants were again different from the ones who participated in the 

calibration test or experiment 1 to avoid any familiarization to the test sentences used. They 

were however recruited in the same way and therefore shared similar demographic features.   

The method by which the stimuli were generated, the procedure followed as well as the 

scoring methodology all mirrored the previous experiment. 
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4. Results 

 

4.1 Calibration Test 

 
Fig 4.1: Psychometric curve for plain speech over the telephone. Listeners’ (n=7) mean WAR 

(open blue circles) as a function of SNR. Error bars represent 95% confidence intervals. 
Estimated SNR values for WARs of 25%, 50% and 75% are shown as open black circles.  

Results from the pre-experiment calibration test (n=7) were used to find the 

psychometric curve for plain natural speech over the telephone and in noise, as shown in 

Figure 4.1. Using this psychometric curve, SNR values of -7.8, -2.9, and 2.1 dB were found 

to correspond to WARs of 25%, 50%, 75% respectively and were subsequently used for the 

two main experiments.  
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4.2 Experiment 1: Natural speech over the telephone and 
in noise 

 
Fig 4.2: WAR and EIC for the three NELE conditions, in the three SNRs. LSD = Fisher’s 

least significant difference. 

Results (n=20) from experiment 1 are shown in Figure 4.2, with speech intelligibility 

reported in terms of WAR and the corresponding EIC. On average, both ASE and SSDRC 

provided intelligibility gains across all SNR conditions. ASE achieved EIC of 1.1, 3.9, and 

8.3 dB, while SSDRC brought EIC of 0.6, 3.5, and 7.9 dB, from high to low SNR. 
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Intelligibility gains were highest at the noisiest, low SNR condition, followed by mid SNR, 

and then the least noisy, high SNR condition. On average, ASE provided higher gains than 

SSDRC. 

An analysis of variance (ANOVA) was performed for each SNR to analyze whether 

NELE conditions had an effect on intelligibility, and Fisher’s least significant differences 

(LSD) were computed at a confidence level of 95%. Results showed that ASE was able to 

significantly increase intelligibility in all three SNRs, while SSDRC was able to do so in the 

noisier conditions of mid and low SNRs. Even though on average, ASE appeared to 

outperform SSDRC, this difference was found to be not statistically significant and in fact, 

the two algorithms had very similar performance in all three SNRs. 
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4.3 Experiment 2: Synthetic speech over the telephone and 
in noise 

 
Fig 4.3: WAR and EIC for the three NELE conditions, in the three SNRs. LSD = Fisher’s 

least significant difference. 

Results (n=20) from experiment 2 are shown in Figure 4.3, with speech intelligibility 

reported in terms of WAR and the corresponding EIC. Since the same SNRs from the 
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previous experiment were used, EICs were calculated from plain natural speech and not from 

unmodified synthetic speech. 

On average, unmodified synthetic speech was less intelligible than unmodified natural 

speech, this is reflected by the negative EICs of -2, -1.6, and -0.5 dB in high, mid, and low 

SNRs, relative to plain natural speech. However, despite this, both ASE and SSDRC again 

provided intelligibility gains across all SNR conditions, with ASE achieving EIC of 1.3,  3.1, 

and 7.5 dB, while SSDRC brought EIC of 1.2, 2.6, and 7.2 dB, from high SNR to low SNR. 

The same pattern of intelligibility gains being highest in the noisiest condition and lowest in 

the least noisy condition was again present. 

The intelligibility of NELE-enhanced synthetic speech appeared to be comparable to 

NELE-enhanced natural speech. In fact, synthetic speech enhanced by both NELE algorithms 

had higher WARs, on average, than enhanced natural speech in high SNR. In mid and low 

SNRs, WARs appeared comparable, but with enhanced synthetic speech having lower WARs 

than enhanced natural speech. ASE-enhanced synthetic speech achieved WARs of 75.5%, 

69%, and 51.9% from high SNR to low SNR, compared to 74.7%, 72.9%, and 56.6% for 

natural speech. For SSDRC, the WARs were 74.9%, 66.7%, and 50.3% compared to 72.6%, 

70.9%, and 54.4%. 

An ANOVA was performed for each SNR and results showed that both ASE and 

SSDRC were able to significantly increase intelligibility in all three SNR conditions. Similar 

to natural speech, no significant difference in performance was found between the two NELE 

algorithms.  
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5. Discussion and conclusion 
 

 

In the previous chapters, I’ve devised a complete testing pipeline to evaluate whether 

NELE algorithms are effective in increasing the intelligibility of synthetic speech that is 

subsequently transmitted through the telephone and presented in additive noise. Results 

showed that both ASE and SSDRC were effective for both natural and synthetic speech 

degraded by telephone transmission, across SNR conditions. Additionally, both algorithms 

were found to be equally effective with no significant difference in performance found 

between the two. 

5.1 Results 
The success of NELE algorithms in improving synthetic speech intelligibility over the 

telephone reflect past studies on NELE algorithms’ effectiveness on synthetic speech that did 

not include telephone degradation in their experiments (Valentini-Botinhao et al. 2013). 

While all of our experiments included the telephone line, and we therefore cannot make 

comparisons of the intelligibility difference with or without the telephone line, we can 

nevertheless make the following observations: (1) telephone transmission does not 

catastrophically impact the effectiveness of NELE, as intelligibility boosts were observed for 

both natural and synthetic speech, across all SNR conditions, (2) telephone transmission does 

not negatively impact NELE effectiveness on synthetic speech more so than on natural 

speech, as post-enhancement, natural and synthetic speech had comparable intelligibility. 

The lower intelligibility of unmodified synthetic speech compared to natural speech 

was to be expected, given that the same HMM-based system was found to be less intelligible 

than natural speech in quiet (King & Karaiskos 2011) and given that background noise has 

been found to have a more severe effect on synthetic speech intelligibility compared to 

natural speech (King & Karaiskos 2010).   

The performance of ASE confirms its effectiveness shown in the preliminary results 

of the second Hurricane Challenge (Cooke et al. 2020) and shows that it, like SSDRC, is 

effective for both natural and synthetic speech (Valentini-Bontinhao et al. 2013). The fact 

that ASE achieved the same intelligibility improvements as SSDRC is impressive due to the 

fact that SSDRC was designed to maximize intelligibility, often at the expense of speech 
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quality or naturalness, as shown in Tang, Arnold, & Cox (2017) where SSDRC-modified 

speech was given a subjective mean opinion score (MOS) of 3 out of 5 in quiet (n=10), an 

entire point lower than unmodified speech. On the other hand, ASE was developed to achieve 

a balance between increasing intelligibility and preserving speech quality. In informal 

listening tests with experts in this area of research, speech processed with ASE was said to 

have a higher quality and to suffer less from distortion or other quality degradations 

compared to SSDRC. If this is further corroborated through formal listening tests, then ASE 

should be considered a better overall NELE algorithm. 

5.2 Limitations and future extensions 

5.2.1 Materials 

In terms of the materials used in the experiments, two main limitations exist. First, the 

synthetic speech used was generated by the HTS speech synthesis system (Zen et al., 2007) 

which used an HMM-based statistical parametric approach instead of the current state-of-the-

art DNN-based statistical parametric approach (e.g. Zen, Senior, & Schuster, 2013). With a 

DNN-based system, intelligibility would likely be higher than in the current experiments. 

However, we believe that the results of this dissertation are still applicable to DNN-based 

systems as both approaches operate by predicting speech parameters and generating 

waveforms based on those parameters, instead of using stored samples of natural speech in a 

database. Therefore, we expect the patterns of intelligibility improvements to be similar with 

a DNN-system, but with higher WARs across SNRs, tending closer towards the WARs of 

natural speech. Future studies could use a DNN system in a similar testing pipeline to 

confirm this prediction. 

Secondly, only one type of noise was tested in this study. In most intelligibility 

evaluation studies, two types of noise are typically used – a fluctuating noise such as a 

competing speaker and a steady noise such as speech shaped noise (Cooke et al., 2013; 

Valentini-Bontinhao et al., 2013). In this dissertation, only one type of noise was used – a 

cafeteria noise environment representative of relatively steady-state noise. We expect SSDRC 

and ASE would also be effective in fluctuating noise for synthetic speech over the telephone, 

given their performance in this study and the fact that they have been shown to work in both 

noise types for natural speech (Cooke et al., 2013; Cooke et al., 2020). However, the pattern 

of intelligibility gains (e.g. higher gains the noisier the condition), the degree of intelligibility 

gains, and the SNR levels at which the algorithms are effective would likely be different. 
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Future studies would have to be conducted to determine these values and to compare the 

performance of NELE on synthetic speech over the telephone in both types of noise. 

5.2.2 Experimental design 

In terms of the experimental design, a few limitations and possible extensions have 

also been noted. First, the psychometric curve for intelligibility over the telephone in noise 

was obtained for only natural speech and not synthetic speech. By using the same SNRs to 

test both natural and synthetic speech, we were able to directly compare the absolute 

intelligibility in terms of WARs, before and after enhancement, for both types of speech. 

However, since natural and synthetic speech have different psychometric curves, we cannot 

make any direct comparisons on the degree of intelligibility improvement in EICs between 

the two types of speech. A future study would need to conduct calibration tests for both types 

of speech, under the same conditions, in order to obtain their psychometric curves and make 

EIC comparisons. 

Secondly, the demographics of the participants may present confounds. Given that a 

local Scottish news corpus was used in this study, non-British participants who are 

nevertheless native speakers may perform worse in identifying unfamiliar British terms such 

as “Home Secretary”, “ministers”, or “the Tories”, which British participants are more 

frequently exposed to. This could be prevented by either using a corpus without a 

geographical or dialectal bias, such as the Harvard sentences or semantically unpredictable 

sentences, or by collecting more detailed demographics data from participants that could be 

used to perform statistical analysis with country of origin as a variable. 

Finally, a further study can be performed to evaluate the quality of the modified 

speech. As suggested in the previous section, while ASE and SSDRC achieved similar results 

in intelligibility, ASE was designed with preserving speech quality as an explicit objective 

while SSDRC was not. ASE has been judged by expert listeners to be better than SSDRC in 

preserving speech quality in normal usage and also for synthetic speech over the telephone. 

This can be tested through two possible means. The first way is through measuring a 

subjective opinion score of the perceived speech quality and the second way is through 

measuring objective proxies of listening effort, such as reaction time and recall. This has 

serious implications for industry applications of NELE over the telephone. For instance, if 

NELE algorithms are shown to severely impact speech quality and significantly increase 

listening effort of speech over the telephone, companies may be reluctant to adopt them even 
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though their effectiveness on intelligibility has been shown in this study, due to the 

possibility of causing dissatisfaction in their customers. Further, if two NELE algorithm are 

shown to provide similar intelligibility improvements, but further studies show that one has 

higher speech quality and requires less listening effort, this would facilitate the selection 

process of NELE algorithms for companies. 

5.3 Industry applications 
The two NELE algorithms used in this study have been chosen with realistic industry 

applications in mind. First, they are noise-independent, thus do not require any knowledge of 

the background noise signal on the receiver’s end of the telephone. Secondly, they are both 

designed to be usable in real-time, and can therefore work with real-time TTS systems and 

not just with pre-recorded or pre-generated speech. 

The positive results of this study show that the use of NELE algorithms is promising 

for the use case of synthetic speech over the telephone. As discussed in the previous section, 

if further studies are able to show that a NELE algorithm can increase intelligibility while 

preserving speech quality both in quiet and in noise and does not require additional listening 

effort from the receiver, then it would be an ideal addition to most businesses already using 

TTS over the telephone.  

Further, NELE algorithms may be able to accelerate industry adoption of TTS over 

the telephone, as NELE algorithms are able to remove one of synthetic speech’s primary 

drawbacks in this scenario—its negative interaction with noise—and bring intelligibility 

close to natural speech. For banks and other businesses that use pre-recorded messages or 

even human operators to redirect phone calls, TTS would be a much more economic option 

and if combined with NELE, it may be able to do so without one of its major drawbacks. 
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